Computational multiscale methods for first-order wave equation using mixed CEM-GMsFEM

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Multiscale Finite Element Methods (GMsFEM)

Article history: Received 8 September 2012 Received in revised form 18 April 2013 Accepted 24 April 2013 Available online 22 May 2013

متن کامل

Tailored Finite Point Method for First Order Wave Equation

Following the idea of the tailored finite point method proposed in [2, 7], a series of efficient numerical schemes are developed for the one dimensional scalar wave equation within various types of media. Stability and accuracy are analyzed and numerically verified. In particular we can obtain unconditionally stable implicit schemes that can be solved explicitly for boundary value problems. We ...

متن کامل

Spectral methods for the wave equation in second-order form

Current spectral simulations of Einstein’s equations require writing the equations in first-order form, potentially introducing instabilities and inefficiencies. We present a new penalty method for pseudospectral evolutions of second order in space wave equations. The penalties are constructed as functions of Legendre polynomials and are added to the equations of motion everywhere, not only on ...

متن کامل

High-order methods for computational wave propagation and scattering

This workshop was concerned with the development of numerical methods for wave propagation with a focus on high-order convergence for general scattering configurations (with applicability to complex and singular geometries and high frequency problems), including integral equations, finite-difference and finite-element algorithms, spectral and Fourier based approaches and hybrids of asymptotic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2020

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2020.109359